A new family of electron-deficient tris(aryl)boranes, B(C(6)F(5))(3-n)(C(6)Cl(5))(n) (n = 1-3), has been synthesized, permitting an investigation into the steric and electronic effects resulting from the gradual replacement of C(6)F(5) with C(6)Cl(5) ligands. B(C(6)F(5))(2)(C(6)Cl(5)) (3) is accessed via C(6)Cl(5)BBr(2), itself prepared from donor-free Zn(C(6)Cl(5))(2) and BBr(3). Reaction of C(6)Cl(5)Li with BCl(3) in a Et(2)O/hexane slurry selectively produced B(C(6)Cl(5))(2)Cl, which undergoes B-Cl exchange with CuC(6)F(5) to afford B(C(6)F(5))(C(6)Cl(5))(2) (5). While 3 forms a complex with H(2)O, which can be rapidly removed under vacuum or in the presence of molecular sieves, B(C(6)Cl(5))(3) (6) is completely stable to refluxing toluene/H(2)O for several days. Compounds 3, 5, and 6 have been structurally characterized using single crystal X-ray diffraction and represent the first structure determinations for compounds featuring B-C(6)Cl(5) bonds; each exhibits a trigonal planar geometry about B, despite having different ligand sets. The spectroscopic characterization using (11)B, (19)F, and (13)C NMR indicates that the boron center becomes more electron-deficient as n increases. Optimized structures of B(C(6)F(5))(3-n)(C(6)Cl(5))(n) (n = 0-3) using density functional theory (B3LYP/TZVP) are all fully consistent with the experimental structural data. Computed (11)B shielding constants also replicate the experimental trend almost quantitatively, and the computed natural charges on the boron center increase in the order n = 0 (0.81)